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An implicit finite difference scheme approximating a third order partial differential equation 
is examined. The scheme is derived, shown to be consistent, and its stability properties are 
analyzed. The partial differential equation is a parabolic approximating equation to the 
reduced wave equation. 6 1985 Academic Press, Inc. 

I. INTRODUCTION 

Parabolic Equation (PE) approximations to the reduced wave equation 
(Helmholtz equation) are used extensively in the prediction of long range sound 
propagation in ocean environments. They have also been used in laser beam 
propagation, quantum mechanics, electromagnetic diffraction and propagation, 
plasma physics, optical waves, and seismic waves. Historically, the “small angle” 
parabolic wave equation, recognized as the standard PE, was first introduced by 
Tappert and Hardin [9, lo] and solved by a “Split-step” technique utilizing a fast 
Fourier transform. A “wide angle” parabolic wave equation, which in a certain 
sense encompasses the standard PE, was introduced by Claerbout [2] using a 
rotational function approximation to a square root operator. Estes and Fain [4] 
pursued the solution of the wide angle equation using the fast Fourier transform 
approach after expanding the denominator of the rational function by an 
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approximating series. Greene [6] and Gilbert, Lee, and Botseas [S] solved the 
wide angle equation by implicit finite difference schemes. The implicit finite dif- 
ference scheme Gilbert, Lee, and Botseas used is the Crank-Nicolson Implicit 
Finite Difference method, identified as the “IFD” model [7]. Recently, the wide 
angle capability has been incorporated into the IFD model and is fully available for 
real applications [ 11. The IFD scheme allows the numerical solution of more 
general problems than the Split-step Fourier algorithm in that IFD can handle 
boundary conditions other than Dirichlet conditions. The IFD model is 
increasingly being used in various applications, and thus it becomes desirable that 
the theoretical validity of the scheme be completely examined. Lee, Botseas, and 
Papadakis [8] and Gilbert, Lee, and Botseas [S] briefly discussed the stability of 
the IFD scheme, but a comprehensive examination had not yet been carried out. 

It is the purpose of this paper to perform a complete analysis of the well-posed- 
ness of the IFD scheme for the solution of the wide angle ocean acoustic wave 
equation. In this paper we consider the wide angle equation (including the standard 
PE) to be a third order partial differential equation, i.e., we do not approximate the 
denominator of the rational function; rather, we do a careful Crank-Nicolson 
derivation of the IFD model making no simplifying assumptions on the coeflicients 
in the equation. We show that the scheme is consistent with the partial differential 
equation, derive its discretization error, and examine its stability properties. 

The paper begins with an example to demonstrate the importance of the wide 
angle capability. Results of this example are obtained through the application of 
several different methods: the Split-step Fourier algorithm, the Implicit Finite Dif- 
ference (IFD) code, the “exact” reference solution of the reduced wave equation by 
the Fast Field Program (FFP), and the normal mode method. 

II. A SHALLOW WATER SOUND PROPAGATION PROBLEM 

This problem is presented to show the importance of the wide angle capability, 
and also to show the accuracy of the Crank-Nicolson finite difference solution. In 
Fig. 1, the sound speed profile is described where the sound speed is 1500 m/s in 
the water column and 1590 m/s in the bottom. 

This problem has a range-independent environment and consists of an isovelocity 
water column over an isovelocity half-space bottom. Both the source and the 
receiver are placed at the same depth, 99.5 m below the surface. The source fre- 
quency is 250 Hz. There is no attenuation in the water, but an attentuation of 
0.5 dB/I in the bottom. There is a density change from 1.0 gm/cm3 to 1.2 gm/cm3 
in the bottom. The propagation loss was calculated up to 10 km. The wide angle 
capability is important because the maximum angle of propagation is 
approximately 19”. 

We use the fast field [S] (FFP) exact solution as a benchmark solution, and a 
normal mode [3] solution is used as a reference solution. For purposes of this dis- 
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FIG. 1. Sound speed profile 

cussion the Split-step small angle and the IFD small angle are identical. From 
Fig. 2, it is very clear that without the wide angle capability (denoted by “IFD 
small angle”), a phase error is evident. However, with the wide angle capability 
(denoted by “IFD wide angle”), the Crank-Nicolson finite difference solution gives 
excellent agreement with the benchmark exact solution. 

III. DERIVATION OF IFD 

The parabolic approximation is usually written in the form 

&#Ju=ik,[(l +@)/(l +q9)- l] 24, 

9t.d = [(n2(r, z) - 1) + ( l/k;)(a2/aZ2)] 24 
(1) 
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FIG. 2. Comparison of solutions. 
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where p, q, k0 are real parameters, p # q, k0 # 0, i = ,,6 and nfr, z) is a real valued 
function of the real variables r, z. The function n(r, z) represents the index of refrac- 
tion of the medium and k0 an average wave number. The choice of the parameters 
p = +, q = 0 yields the “small angle” approximation of Tappert, and the choice p = 2, 
q = a yields the “wide angle” equation due to Claerbout. 

For our purposes we choose to write (1) as a third order partial differential 
equation 

(1 + qY)(8/&) u = iko(p - q) $Pu. (2) 

The boundary conditions associated with a solution u = u(r, z) of (1) and (2) are 

4ro, z) =f(z), O<z<B 

u(r, 0) = 0, r > r. (3) 

Mr, B) + Pdr, B) = Y, BZO, r>r,, 

IX, /I, y are real, r. > 0, z = 0 and z = B represent the surface and bottom, respec- 
tively, of a flat bottom ocean wave guide, f(z) is the source, and r is the range of 
propagation. 

We choose the standard grid on the wave guide, h = AZ, MAz = B, ii4 an integer, 
k = Ar, and for z, = mh, r, = r. + nk, m, n integers, u(r,, z,) = u;. We shall use the 
letter “L?’ in two different ways, as a counter on the range variable r, and to 
designate the index of refraction n(r, z); the context will make it clear which is 
intended in each case. A standard way in which the Crank-Nicolson approximation 
is derived for traditional parabolic partial differential equations is to take the 
average of the classic explicit (forward) difference approximation and the 
(backward) implicit approximation. In order to motivate the application of this 
procedure to (2) we shall briefly describe its application to a parabolic equation in 
standard form, namely the standard equation PE, 

u,=cu+duzz, c = ik,(n* - 1)/2, d = i/2ko. (4) 

Consider the two stencils in Fig. 3. The first of these is used to make the forward 
approximation based at the point (r,, r,) and the second to make the backward 
approximation based at (r, + 1, z,). The difference equations are 

CU ~+‘-u~]/k=c~u~+d[u~+,-2uL+u~~,]/h* (54 

and 
n+l CU, - u;]/k = c;+ ‘u;+ ’ + d[u;;‘, - 2~;’ ’ + u;‘?J/h*. (5b) 

Note that the left-hand sides of these equations are the same. The Crank-Nicolson 
approximation to (4) is obtained on taking [(5a) + (5b)]/2. 

In order to begin to carry out this development for (2) we need to define the 
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FIG. 3. Forward and backward stencils 

forward and backward discretizations of (i3’/~Yz’)(&/&) associated with the two 
stencils. These are the standard centered difference in z and forward (backward) dif- 
ference in r combined in a natural manner keeping in mind the base point of the 
stencil in each case. The two difference approximations are equal, as above, and 
have the value 

{(u y+” - 224;+ l + u;“, )/h2 - (u; + ’ - 224 + u;-- ,)/h2}/k. 

Henceforth, we shall use the notation (d2u); = u; + 1 - 224; + u;- , . It is not difficult 
to prove that for arbitrary sufficiently differentiable functions b(r, z), the truncation 
error of the above approximation is given by 

(6) 

as k -+ 0, h + 0 independently of the manner in which h, k approach zero. The 
analogues of (5a) and (5b) are then determined to be 

[l +q((n2);- l)](u$+’ -u;)/k+q[(d2u);+‘- (d2u);]/(kk;h2) 

= ik,(p - q)[((n’): - 1) u; + (624;l(k;h2)l, Va) 

[ 1 + q((n2);+ I- l)](u;+ l- u;)/k + q[(S’u);+ ’ - (62u);]/(kk;h2) 

=ik,(p-q)[((n*);+‘- 1) u;+‘+ (62~);+1/(k;h2)]. (7b) 
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Now taking the average of (7a), (7b) and simplifying one obtains the Crank- 
Nicolson-like difference equation approximation to (2), 

(6/h*) u;“, + (iif, - 2(5/h*)) u;+ l+ (6/h*) u;;ll 

= (b/h*) 24; _ 1 + (aOk - 2(6/h*)) 24; + (b/h*) u; + 1) @aI 

where 

b = q/k; + ik( p - q)/2k,, 

al =al(r, z; k)= 1 +q[(n*(r, z)+n*(r+k, z))/2- l] 

+ikk,Jp-q)(n*(r+k,z)- 1)/2, 

aO=aO(r, z; k)= 1 +q[(n*(r, z)+n*(r+ k, z))/2- l] 

+ ikkdp - q)(n*(r, z) - 1 l/2, 

(8b) 

and e.g., 6 is the complex conjugate of b, (al); = al(r,, z,; k). Note that if n is 
independent of range then al = ~0. 

We shall now consider the discretization of the boundary conditions (3). The 
conditions u(rO, z) =f(z) and U(T, 0) = 0 are trivially obtained on taking U: =f(z,), 
m = 1, 2,..., M- 1, and u;f=O, n= 1, 2 ,.... The bottom boundary condition is dis- 
cretized using a central difference in order to obtain a second order approximation, 

z&(Y, B)z [u(r, (M+ 1) h) - U(T, (M- 1) h)]/2h, 

so the condition becomes 

CLU”M+BCU”M+I-U”M~11/(2h)=?i, n = 1, 2,... (9) 

The “fictitious” term u%+ , can clearly be expressed in terms of the “real” unknowns 
u”M, G-l of the problem. In order to encompass (9) into the matrix formulation of 
the problem, set m = A4 in (8a) and make the substitution, from (9) 

to obtain 

2(6/h*) u”,‘_‘, + (al”, - 2(6/h*)( 1 + ah/b)) u”M ’ 

= 2(b/h*) u”Mp, + (uOL - 2(b/h*)( 1 + ah/B)) u”M + g,,,,, 

gh,k = (b - 6) 2ylBh = W4p - q)lPhb 

(10) 

Taking (10) into consideration and the surface boundary condition mentioned 
earlier, the system (8) can be expressed in the form 
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U’I . . G * . . 11l AO”,‘; B u”Mmm 1 
+ 

2B AO”, u”M 

0 
0 

0 

gh,A 

(11) 

Al;=al;-2(b/h*), m= l,..., M- 1; A&=+-2(1 +ah/j)b/h*; 

AO; = aOk - 2(b/h*), m = l,..., M- 1; AO”, = aOL - 2( 1 + ah/B) b/h2; 

B = b/h2. 

Let b;,O;; be the Mx M diagonal matrices having diagonal entries (;;I;, G,..., 
aL-1, al”,) and (aO;, a0; ,..., uOL_,, aOk), respectively, and let T, an Mx M 
tridiagonal matrix, and un be given by 

T= ““*::::ff::::.. I -1 2 -1 2 -1 -1 * -2 j’*-1 2( 1 + uh//I 

Then the system (11) becomes 

(D’f - (6/h’) T) un + ’ = (D;; - (b/h*) T) un + g, (12) 

g the obvious vector. 

IV. CONSISTENCY 

A difference equation approximation to a partial differential equation is said to 
be (unconditionally) consistent with the differential equation if the difference 
equation approaches the differential equation as the mesh size approaches zero, 
independently of the manner in which the mesh size approaches zero. More 
precisely, (8) is consistent with (2) if 
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approaches zero as h, k + 0, independently of the manner in which h, k approach 
zero, for arbitrary “net” functions +4(r, z) having sufficient differentiability. The fac- 
tor l/k is present since in the derivation of (8) we previously cleared the k from the 
denominator. In order to help simplify (13) we shall express ~0, al, and b in terms 
of their constituent parts. Let 

Ra = Ra(r, z; k) = 1 + q[(n’(r, z) + n’(r + k, z))/2 - I], 

la = Zu(r, z) = ik,(p - q)(n2(r, z) - 1)/2, 

Rb = q/k;, Ib = i(p - q)/2k,, 

c = c(r, z; k) = q[n*(r + k, z) - n2(r, z)]/2, 

then 

aO(r, z; k) = Ra(r, z; k) + kZa(r, z), 

z(r, z; k) = Ra(r, z; k) - kIa(r + k, z), b = Rb + klb, 

(l+q~)~,=(Ra-c)~,+Rb~,,,, 

and 

ik,(p -4) 9’4 = 2(Z4 + Zu4,z). 

Observe that the standard Taylor approximation applied to n2 in the r variable 
yields c(r, z; k) = q[nF(r, z) k + O(k*)]/2. It follows that (13) may be expressed in 
the form 

ntl 4, -dZ 
k 

- (,,),} + (Rb - klb) { (62g)‘+;h; (a2m)-} + {c;}(&); 

-Za;{(l5;+’ - {q4~+l}{zu~+‘-zu~} 

- Rb(d,& + W4zz); . 

Now each term appearing in brackets, {--I, can be expanded using a standard 
Taylor approximation, the centered difference approximation, or (6) yielding 
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lR~:,(W,)~ k/2 + OW’)} + W-kW{(L)E, + (dmz); k/2 + O(h2 +k*)3 
+ (q(4); k/2 + W*)}@,K, - W{ (4r): k + W*)) -‘W (4zzKz + W*)) 
- (4, + O(k)} { (zar); k + W2)) - Rb(4,;:K + 2WdzzK 

= IWWW,, + RW,,z, + q(n*),d,- W& + Zb4r.x) - 2WX + W* + k*)I 
= KW’WCU + 49) 4,- Wp - 4) -%W~); + 0th’ + k*)l, (14) 

where the last equality uses the fact that kc@,, = O(k2). It follows immediately from 
the equality of (13) and (14) that the range dependent index of refraction case, 
n = n(r, z), Crank-Nicolson difference scheme (8) is unconditionally consistent with 
the partial differential equation (2). 

Further, the truncation error or local discretizution error can be obtained as the 
magnitude of the difference, at a point (rn, z,), between the differential equation 
and the difference equation both evaluated with the net function 4 = u the exact 
solution of the partial differential equation. Again, the equality of (13) and (14) 
yields immediately that the local discretizution error of (8) is O(h’+ k2). 

V. STABILITY 

We now turn to the question of the stability of the scheme. We shall use the 
matrix system (12) which encompasses both the system (8) md the boundary con- 
ditions. The system is said to be stable if an error (round-off, etc.) made at the nth 
step does not magnify uncontrolled in its propagation to the (n + j)th. In our case, 
this translates into showing that if (12) is written in the form u”+ ’ = Bu” + g, B an 
Mx A4 matrix, g an M-vector, then (assuming for the moment that B is constant) 
the eigenvalues of B are less than or equal to unity in magnitude. 

The system (12) can be transformed so as to replace the nonsymmetric matrix T 
with a symmetric one. Let P be the A4 x A4 diagonal matrix having diagonal entries 
Cl,..., 1, l/a], then S = PTP- ’ is the symmetric tridiagonal matrix having exactly 
the same entries as T except in the lower right 2 x 2 block, in those positions S is of 
the form 

S (lower block) = 
[ -t/I 

-3 
I 2(1+&//I) . 

Since D,, D,,, P are diagonal matrices and hence commute, (12) can be written in 
the form 

P-l@- (b/k2) S) Pun+’ = P-l@;- (b/h2) S) Pun+ g, 

and thus we have a symmetric problem 

(d’t - (b/h*) S) un+l = (D; - (b/h2) S) Y” + Pg, (15) 
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where U” = P- ‘un, It follows that the matrix B (actually B”) alluded to earlier can 
be represented by 

B” = (6; - (6/h2) S) - ’ (D; - (b/h2) S), 

n+l.=Bn#+ g”. v 

Clearly, system (12) is stable if and only if system (16) is stable. 

(16) 

We need first to show that (& - (6/h2) S) - A ( n is fixed but arbitrary) is non- 
singular. If there exists an M-vector y, y = (y ,,..., yM), such that Ay = 0, i.e., r*,Sr = 
(/z2/6) y*i$y, then the left side is real since S is symmetric and the imaginary part of 
the right side is a sum, on m, of terms of the form [k(p - q)/(2k,)]{ 1 + q 
[n2(r, z,) - n2(r + k, z,)]/2) 1~~1 2. We would like to conclude that the imaginary 
part is never zero, and thus that y = 0. Now p # q is a standing hypothesis, and q is 
thought of as being of magnitude less than one. We now wish to call upon an 
assumption which is frequently made long ‘before this point in the discussion of the 
whole area, namely, “the index of refraction is slowly varying in range.” Invoking 
this assumption to obtain ln2(r, zi) - n2(r + k, zi)l < 2 then yields A nonsingular. We 
remark that (8) is the first general statement of IFD which has not utilized the prior 
imposition of the simplifying “slowly varying in range” assumption. 

We referred above to the case in which the coefficient matrix B” in (16) is con- 
stant; from (8a), it is clear that this occurs precisely when n(r, z) E n(z); i.e., the 
index of refraction is independent of range. This is the so-called “layered medium” 
case. In this case the stability would follow upon showing that the eigenvalues of B 
all have magnitude less than or equal to unity, but we shall pursue the general case 
for the moment. Doing the standard backward recursion on (16) yields 

V 
fl+l=BI1Bn-l ...BOvO+B”B”-‘...B’gO+ . . . +B”B”-‘g”-2+B”g”-‘+g”, 

where u” is the vector of “correct” initial values, and repeating the process using an 
initial vector u”, containing errors we then obtain 

e n+l- nil --u _v~+l=B~B~-l...Bo(Uo_U~)=B”B”-l...BOeO, (17) 

the formula for the propagation of errors. The finite difference scheme is stable if 
en+’ remains bounded as n increases indefinitely. Clearly the boundedness of the en 
is attained if we can show that the matrices B” are bounded in norm by 1 for all n. 
It does not appear to be sufficient to simply show that the eigenvalues of each B” 
are less than or equal to one (it is not the case that llBl[ < 1 when all the eigenvalues 
of B have magnitude less than or equal to 1; that result does hold when B is Her- 
mitian, though). If in addition to all eigenvalues having magnitude less than or 
equal to 1, the associated eigenvectors constitute a complete orthonormal basis, 
then the matrix has norm less then or equal to one. 

PROPOSITION 1. Let (/A~, y’) satisfy By’= pjyi with Ipjl < 1 for j= 1, 2,..., M, and 
let {y’> be a complete orthonormal set; then ((B(( < 1. 
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Proof: Use the definition of ilell, IlBll =sup{IIByII: llyll < 1 }. If y is an arbitrary 
complex M-vector with IIy II < 1 then y can be expressed in the form y = C,E, a,#, 
where llyll 2 = C,E , lajl 2 by the orthonormality. But then 

BY = D-j/q 

and hence 

llB~ll~=C l”jpj126C luj126 1. 

Our objective is to show that the hypothesis of Proposition 1 is satisfied for a 
large class of matrices of the form (16). A property which is related to this question 
is that of normality of matrices-a matrix A is normal if it commutes with its 
adjoint, i.e., A*,4 = AA*, which holds if and only if A is similar to a diagonal 
matrix via a unitary matrix. 

PROPOSITION 2. If a nonsingular matrix A is normal, say P*AP = D, P unitary, 
D diagonal, then each of the eigenvalues of A* -IA has magnitude 1 and P 
diagonalizes A” ~ ‘A. 

Proof. Since P is a unitary matrix P* = P-‘. Thus A = PDP*, A* = PDP*, 
A*-’ = P&‘P*, and hence 

A * ~ ‘A = PD ~ ‘p*pDp* = PD ~ ‘LIP*. 

We have shown that A* - ‘A is similar to a diagonal matrix, the diagonal elements 
(eigenvalues) of which are all of the form z/Z for some complex number z, and 
hence have magnitude 1. 

We remark that, since the columns of P constitute a complete orthonormal set of 
eigenvectors for A, the hypothesis of Proposition 1 with B = A* -‘A is satisfied 
when A is normal. 

The first case we choose to consider is when n(r, z) = n is constant; then (16) is of 
the form 

B”= B= (CSI- (6/h2) S)-’ (aZ- (b/h2) S), 

i.e., 0: = D;l= al, a = 1 + q(n2 - 1) + i&,(p - q)(n’ - 1)/2, Z the identity matrix. We 
take A = (aI-- (b/h’) S), then A*-’ = (G1- (6/h2) S)-’ and it is trivial to show that 
A satisfies the normality property A*A = AA*. Thus, if the index of refraction is 
constant the IFD scheme is unconditionally stable for all values of the parameters 
~1, B, Y, P, q, k,. 

Next we shall consider the layered medium case, namely, n(r, z) c n(z); i.e., the 
index of refraction is independent of range. In this case 0; = 0;; = D and 

A = D - (b/h2) S. 

Since A* = A it is trivial to show that AA* = A*A if and only if AA* = AA*; i.e., 
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the imaginary parts of the elements of the product AA* are all zero. AA* is a five 
diagonal matrix and the main diagonal and the two off-off diagonals are obviously 
real. The off diagonal elements, ZZ,, R,,,, where 

H, = (a, - W/~*MW’) + h,,. I - (b/h*)) 5/h*, 

m = 1, 2,..., M-2, and 

H M- 1 = $ ((QM- 1- w/~‘)w~*) + (a,w- 2(1+ (c4B)) W2), 

a, = 1 + q(n*(z,) - 1) + ikk,(p - q)(n*(z,) - 1)/2, are also real when a = 0. Thus, 
the layered medium case of IFD is unconditionally stable when a = 0. 

A slightly different kind of analysis yields some information in a range dependent 
case. Let n(r, z) = n(r), i.e., independent of depth, then Dl = al”Z and D;f = aO”Z, Z 
the Mx A4 identity matrix and hence 

B”= (*I- (6/h*) S)-’ (uO”Z- (b/h*) S). 

Now if 1, y is an eigenvalueeeigenvector pair for S, then (~0” - l(b/h*)), y is an 
eigenvalue-eigenvector pair associated with (aO”Z- (b/h*) S) and similarly 
l/(a-n(b/Zz*)), y is associated with (ZZ- (5/Zz2) S))‘. It follows that the 
eigenvalue-eigenvector pairs associated with B” are p” = (~0” - l(b/h*))/ 
(a - n(6/Zz*)), y. Since the matrix S is symmetric, its eigenvalues are real and there 
exists a complete set of real orthonormal eigenvectors of S. The eigenvalues of S 
can be approximated either numerically or using Gerschgorin’s theorem; thus any 
condition on the index of refraction for which 1~~1 < 1 for n = 0, 1,2,... yields a 
stability condition in this case. 

VI. AN UNSTABLE VARIANT 

One might be tempted to consider using only the forward difference 
approximation scheme (7a) to solve (2). This scheme is easily written in matrix 
form-we discover that it is implicit, not explicit as we might have hoped. Consider 
(7a) expressed as 

bu;t’, + a~u;+ ’ + bu;;‘, = (b+ib’)u:,-,+(a$+ia~)u;+(b+ib’)u;+,, (18) 

where 

a; = 1 + q((n*); - 1) - 2q/kGh*, b = q/k; h*, 

a:= kkdp - s)((n’K - 1 -VW*), b’ = kko(p - q)/k;h*. 

We shall examine the simplest possible case, n(r, z) = n, a constant, a; = a, a: = a’, 
and both the surface and the bottom boundary conditions zero. Then we can 

581/51/3-S 
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legitimately apply the Fourier series method (von Neumann’s method) to analyze 
stability. We examine solutions of (18) of the form u; = ea(nk)ei8(mh! Substituting 
this expression into (17) and simplifying, one obtains the amplification factor 

(a + id) + (b + ib’) eiBh + (b + ib’) eCiah l=eOLk= 
u + bei@ + be - 0 

=l+i 
a’ + b’(2 cos /I/z) 

> a+b(2cosj?h) ’ 

Clearly 1 ?j > 1 for all combinations of the step sizes h, k, thus (7a) is “uncon- 
ditionally unstable,” and this is the case for all allowable choices of the parameters 
P, q,ko, n. 
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